
jupiterone.com

You’ve seen it, you’ve been a part of it. Alert fatigue sets
in with warnings coming from multiple domains: cloudsec,
infrasec, netsec, data security, appsec, seceng, identity
and access management (IAM), secops, vulnerability
management… and a hundred other sources. Each of these
security domains is complex enough on their own, but in
today’s cloud computing environment, all of these areas
are not only interrelated, they are interconnected.

The complexity of relationships between your cyber assets
is impossible to recognize in siloed systems, resulting
in the creation of thousands of alerts of “possible risk”,
burying the real issues in meaningless reports. The key to
separating actual risk from hypothetical musings (and
actually getting remediation prioritized) is using cyber
asset relationships to provide context around application
security vulnerabilities.

Why is Appsec so challenging?
Development, engineering, and security teams frequently
have a challenge answering seemingly innocent questions:

•	 Who are the developers that generated the greatest
number of vulnerabilities in production?

•	 Which code repos or projects have the most ‘high’
vulnerabilities deployed, that are exposed to the
internet (publicly accessible)?

•	 Which events trigger my Lambda functions?

•	 What open code and software vulnerabilities do I
have on applications that are deployed to production
infrastructure, that isn’t encrypted, that exposes
personally identifiable information (PII) to the internet?

As the questions get more difficult, additional complexity
in your tools is required. In order to answer the question,
an organization needs to have complete understanding
and visibility of their code pipeline tools and the disparate
systems that make up their infrastructure.

Aggregation of the data for analysis, investigation, and
remediation is a technical challenge. The sheer volume

of findings reduces clarity when teams need to prioritize
their finite resources for corrective action.

How to achieve the reduction of
noise
A cloud-native security platform providing visibility and
security into your entire cyber asset universe is needed to
manage the complexity of assets and relationships within
your systems. Our mission at JupiterOne is to reduce the
noise to deepen understanding, and help you focus on high
priority risks. To achieve this, we ask questions of the data
using the JupiterOne Query Language (J1QL).

What follows is a suggested process for refining a J1QL
query that could potentially return tens of thousands of
results. We help you narrow the results into a limited set
that is easily visualized within an expandable/contractable
graph.

The starting point: integrations with
existing domains

JupiterOne has managed integrations for:

•	 Code repositories, e.g., GitHub, Bitbucket, Gitlab

•	 Software/code scanners, e.g., Snyk, Veracode,
WhiteHat, Detectify, Checkmarx

•	 Cloud service providers, e.g., Amazon Web Services
(AWS), Azure, Google

All of the above fall under what are considered “cyber
assets” - any hardware or software that can be defined
by code: containers, virtual machines, data stores, user
accounts, identities, code repos, pull requests, laptops,
scanners, agents, vulnerabilities, findings, and much more.

A simple query: Define a starting point
using a severity level
Many shops have security scanning tools for different
purposes - one for containers, one for software

BLOG

Turn 10,000 AppSec Findings
into 10 Actual Risks

jupiterone.com

http://www.jupiterone.com
http://www.jupiterone.com

jupiterone.com

development, one for the network, and another couple for
infrastructure. Logging into each of the individual tools to
attempt investigation and remediation efforts is a task in
itself, let alone when teams need to start managing several
of these scanners that each return numerous findings.
Wouldn’t it be nice to see ALL of them in one dashboard?

Let’s start here with a simple J1QL query:

Since JupiterOne integrates with and collects findings from
other vulnerability scanners, this can return all findings
from integrated security and code scanner tools, e.g.,
Snyk, Qualys, Tenable, Gitleaks, etc.

Limit the query to code repos

A simple query with no qualifiers can result in a lot of noise and
volume. To limit results to just code findings, let’s focus our
results on code repositories:

This cuts down the findings significantly as now we’re only
looking at findings that are related to a code repository. Notice
that the query does not specify whether it is Snyk findings or
Veracode or WhiteHat. That is because JupiterOne applies a
high level model to abstract the data. This reduces the need
for tuning and allows the same query to work across multiple
vendors/products.

Return a graph for easy visualization

Limiting the results to those found within code repos is still likely
to return too many findings to be of use. A unique answer to
simplifying the reporting process is through cyber asset and
relationship graphs. These graphs can be used to create a high
level overview, with the ability to drilldown to the granular level.

We extend our query to create a graph (tree):

We have further filtered our results to only return findings
related to code repositories that define functions. At
JupiterOne, our architecture is heavily serverless, using AWS
Lambda functions. The query could easily be modified for
virtual instances, hosts, containers, clusters, etc.

find Finding with numericSeverity > 5

find Finding with numericSeverity > 5
that HAS CodeRepo

find Finding with numericSeverity > 5
 that HAS CodeRepo
 that DEFINES Function
return tree

http://www.jupiterone.com

jupiterone.com

Refine the results set to see access roles
Refinement of this query continues by looking to specifically
identify the findings related to software code changes that
define our compute functions, and those that isolate individual
functions that define and allow access - via access roles and
access policies.

Extend our query to include access roles and policies:

At this point, the remaining results are software findings that
define Lambda functions that have access (via AWS IAM Roles
and Policies) to data stores, including S3 buckets, DynamoDB
tables, RDS databases, Elasticsearch clusters, etc. This is an
example showing the benefits of the abstracted data model
- `DataStore` covers any and all data stores matching the
relationships, both current and future.

Final tweaks
In a small adjustment to the tuning of the query, we raise the
severity from a ‘5’ to an ‘7’, which will expose the high or critical
findings, only:

Final modifications to the query will filter the previous results
to yield those findings that allow access to unencrypted data
stores that contain ‘critical’ data.

Drill down into the final result set
Clicking through the various node and relationship
entities in JupiterOne’s dynamic graph visualization allows
real-time traversal of the knowledge base, to facilitate
additional inquiries such as:

•	 What else within the subnet is accessible via the IAM
role/policy assigned by the code defining the function?

•	 What does the function have access to? For example,
it’s triggered by a specific Amazon API Gateway.

find Finding with numericSeverity > 5
 that HAS CodeRepo
 that DEFINES Function
 that ASSIGNED AccessRole
 that ASSIGNED AccessPolicy
 that ALLOWS DataStore
return tree

find Finding with numericSeverity >= 7
 that HAS CodeRepo
 that DEFINES Function
 that ASSIGNED AccessRole
 that ASSIGNED AccessPolicy
 that ALLOWS DataStore
return tree

find Finding with numericSeverity > 8
 that HAS CodeRepo
 that DEFINES Function
 that ASSIGNED AccessRole
 that ASSIGNED AccessPolicy
 that ALLOWS DataStore with
 encrypted!=true and
 classification=’PII’
return tree

http://www.jupiterone.com

jupiterone.com

•	 Which developer created, approved, or merged this
pull request (PR)?

•	 Who owns the infrastructure in case of remediation?

Similarly, you can find vulnerable code deployed to be
internet facing:

With simple tuning/modification of queries, we can start
with hundreds, thousands, maybe even tens of thousands
of findings across all sorts of security and code scanners,
and quickly prioritize the findings that pose the greatest
risk to our organization’s crown jewel assets - in this case,
customer data.

The results of a refined query:
simplicity, visibility, and clarity
The seemingly impossible question we asked at the
beginning, “What open code and software vulnerabilities

JupiterOne is your security operations central command.
Whether you’re an established enterprise, or a budding
startup, our cloud-native cyber asset management,
visibility, and security platform empowers customers to
centralize security operations, streamline processes, and
drastically reduce enterprise risk.

www.jupiterone.com

© 2021 JupiterOne. All Rights Reserved.

do I have on applications that are deployed to production
infrastructure, that isn’t encrypted, that exposes personally
identifiable information (PII) to the internet?”, is just one of
numerous questions developers and security teams can
find the answers to with JupiterOne’s graph knowledge
base.

Without using JupiterOne, an application security engineer
would have to reconcile a list of findings from Snyk and
work with a DevOps engineer to figure out which Lambda
functions are affected. These engineers may even need to
loop in development or security team members to figure
out which repos, PRs, and customer data stores could be
affected.

What you can do right now
In the current security reporting environments where
there is too much finding/alert fatigue due to excess
volume and noisiness of signal, not all findings equate to
risk. It’s through the systematic interrogation of our cyber
environments and connecting all of the disparate systems
which compose what we define as an “asset”, that we are
able to identify true business risks and the who, what,
where, when, and how to take corrective action.

We invite you to run your own queries on JupiterOne. Our
basic platform is free. This is not a “trial” version, there is
no expiration. Our hope is that you will see immediate value
as you begin to surface your cyber assets and be able
to determine your highest security priorities through the
query refinement process.

If you have questions or comments, I monitor our slack
channel daily, and look forward to hearing from you.

George Tang, Principal Security Architect
JupiterOne

Find Finding with numericSeverity >= 7
 that HAS CodeRepo
 that DEFINES Function
 that PROTECTS Firewall
 that ALLOWS Internet
return tree

http://www.jupiterone.com
http://www.jupiterone.com
https://info.jupiterone.com/get-started
https://join.slack.com/t/jupiterone-community/shared_invite/zt-9b0a2htx-m8PmSWMbkjqCzF2dIZiabw
https://join.slack.com/t/jupiterone-community/shared_invite/zt-9b0a2htx-m8PmSWMbkjqCzF2dIZiabw

